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We compute that the growth of the occupation-time variance at the origin up to time t
in dimension d = 2 with respect to asymmetric simple exclusion in equilibrium with
density ρ = 1/2 is in a certain sense at least t log(log t) for general rates, and at least
t(log t)1/2 for rates which are asymmetric only in the direction of one of the axes. These
estimates give a complement to bounds in the literature when d = 1, and are consistent
with an important conjecture with respect to the transition function and variance of
“second-class” particles.
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1. INTRODUCTION AND RESULTS

Consider asymmetric exclusion processes on Z
d whose rates have a drift. It is

known that the occupation-time variance at the origin up to time t in equilibrium
is proportional to t times the expected time a second-class particle, beginning at
the origin, spends at the origin, that is, t

∫ t
0 (1 − s/t)ps(0, 0)ds where ps(0, j) is

the second-class particle transition function (1.3). Let us now fix the equilibrium
density ρ = 1/2 so that the mean of the second-class particle at time t , proportional
to (1 − 2ρ)t , vanishes. Recently, it has been argued, as the variance of a second-
class particle at time t , starting initially at the origin–

∑
j2 pt (0, j) in this case–

is conjectured to be on the order t4/3 in d = 1(13) and proved (for a closely
related resolvent quantity) to be at least t5/4 (4), that the transition function of the
second-class particle decays on order t−2/3 in d = 1 (cf. Eq. (4.8) Ref. (7)). In
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d = 2, the second-class particle variance is conjectured as O(t(log t)2/3) (13) with
a proof (for a resolvent quantity when the process rates are asymmetric only in the
direction of one of the axes)(14). Perhaps by the same sort of reasoning as in Ref.
(7), one may claim the second-class transition function decays as t−1(log t)−1/3 in
d = 2 (cf. Eq. (12) Ref. (13)). Then, the occupation-time variance orders should
match second-class particle variance orders in both d = 1 and 2. We mention also
these variance orders have connections to fluctuation orders of the current across
the origin and in turn to certain Riemann-Hilbert and combinatorial problems on
which there has been much recent study (cf. Refs. (2, 7, 14)).

In fact, in Ref. (1), it was shown recently in d = 1 that the occupation-time
variance at the origin diverges in a sense when density ρ = 1/2 at least on order
t5/4 which is consistent with the above discussion. The purpose of this note is to
give analogous consistent bounds in d = 2, namely, we show the occupation-time
variance at density ρ = 1/2 diverges in d = 2 on order at least as t log(log t)
for general asymmetric rates, and at least as t(log t)1/2 when the asymmetry is
only in the direction of one of the axes (Proposition 1.3). The methods are to
link occupation-time variances and certain resolvent H−1 norms, and then to use
some “free-particle” comparisons of H.T. Yau in the style of Bernardin(1). These
techniques seem well suited to our case ρ = 1/2. But, we remark, open and of
interest, would be to study the more general problem of occupation time in a
moving frame with velocity given by the mean drift of the second-class particle
(cf. after (1.3)) when density ρ �= 1/2.

1.1. Model

Informally, the simple exclusion process on Z
d is a collection of random

walks which move with jump rates p(i, i + j) = p( j) independently except in that
jumps to occupied vertices are suppressed. In this article, to avoid technicalities,
we will assume p is finite-range, that is, for some R < ∞, p(i) = 0 for |i | > R,
and also that its symmetrization (p(·) + p(−·))/2 is irreducible. More formally, let
� = {0, 1}Z

d
be the configuration space where a configuration η = {ηi : i ∈ Z

d} is
a collection of “occupation” coordinates where ηi = 1 if i is occupied and ηi = 0
otherwise. The exclusion process is a Markov process η(t) evolving on � with
formal generator

(L f )(η) =
∑

j

∑
i

p( j)ηi (1 − ηi+ j )( f (ηi,i+ j ) − f (η)).

Here, ηi,i+ j is the configuration obtained from η by interchanging the values at
i and i + j . Let also Tt denote the associated semi-group. See Ref. (5) for more
details.

It is well-known that there is a family of invariant measures {Pρ : 0 ≤ ρ ≤ 1}
each of which concentrate on configurations of a fixed density ρ. These measures
take form as Bernoulli product measures, that is, Pρ independently places a particle
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at each vertex with probability ρ. Let Eρ denote the process expectation with
respect to Pρ . Denote also by 〈·, ·〉ρ and ‖ · ‖0 the innerproduct and norm on
L2(Pρ).

In the following, we will work with the L2(Pρ) extension of Tt and its
generator Lρ which is the closure of L over local functions, that is functions
depending only on a finite number of coordinates. One can compute that the
adjoint L∗

ρ , with respect to Pρ , is itself the generator of simple exclusion but with
reversed jump rates p(−·). See Proposition IV.4.1, Ref. (5)) for more discussion.
For simplicity, we will drop the suffixes in this notation, L = Lρ and L∗ = L∗

ρ .

1.2. General Problem and Connection to Second-Class Particles

Consider the centered occupation time, say, at the origin up to time t , Aρ(t) =∫ t
0 (η0(s) − ρ)ds. The problem is to compute the variance of Aρ(t) under the

equilibrium Pρ . Let σ 2
t = Eρ[A2

ρ(t)] denote the variance. We compute, using
stationarity and basic calculations, that

σ 2
t = 2

∫ t

0

∫ u

0
Eρ[(η0(s) − ρ)(η0(u) − ρ)] dsdu

= 2
∫ t

0
(t − s)Eρ[(η0(s) − ρ)(η0(0) − ρ)] ds. (1.1)

To express the kernel further, consider the “basic coupling” of two systems, the
first starting under ξ ∼ Pρ(·|η0 = 0) and the second under ξ + δ0, that is with an
extra particle at the origin (where δ0 is the configuration with exactly one particle
at the origin). Let (ξ (t), R(t)) ∼ P̄ denote the coupled process where R(t) tracks
the discrepancy or “second-class” particle. The joint generator is

(L̄ f )(ξ, r ) =
∑

j

∑
i,i+ j �=r

p( j)ξi (1 − ξi+ j )( f (ξ i,i+ j , r ) − f (ξ, r ))

+
∑

i

p(−i)ξr+i ( f (ξ r+i,r , r + i) − f (ξ, r ))

+
∑

i

p(i)(1 − ξr+i )( f (ξ r,r+i , r + i) − f (ξ, r )).

The first sum refers to jumps not involving the discrepancy location, while the
second and third sums correspond to jumps of other particles to the discrepancy
position and jumps of the discrepancy itself.

We have then

Eρ[(η0(s) − ρ)(η0(0) − ρ)]

= ρ(1 − ρ)[Pρ(η0(s) = 1|η0(0) = 1) − Pρ(η0(s) = 1|η0(0) = 0)]

= ρ(1 − ρ)P̄[R(s) = 0] (1.2)
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which leads to the relation mentioned in the prolog between occupation time
variance and expected occupation at the origin of a second-class particle:

lim
t→∞ σ 2

t /t = lim
t→∞ 2ρ(1 − ρ)

∫ t

0
(1 − s/t)P̄[R(s) = 0]ds

= 2ρ(1 − ρ)
∫ ∞

0
P̄[R(s) = 0]ds; (1.3)

the notation pt (0, j) given earlier now reads pt (0, j) = P̄(R(t) = j).
The second-class particle process R(t), with respect to its own history, is

not Markov except when the jump rate p is symmetric, in which case, it is a
symmetric random walk. In general, it is highly dependent on the whole system.
However, one can roughly think of R(t) as some sort of random walk with mean
drift (1 − 2ρ)t

∑
i p(i). This drift vanishes exactly when p is either mean-zero

(
∑

i p(i) = 0) or ρ = 1/2, and so one might think the process is recurrent exactly
in this case so that

lim
t→∞ σ 2

t /t = ∞ in d ≤ 2 when p mean-zero or ρ = 1/2

< ∞ otherwise.

This has been established in all cases but one (cf. Refs. (1, 3, 8, 9)). What remains
is to show the variance is superdiffusive in d = 2 when ρ = 1/2 and

∑
i p(i) �= 0

which is the point of this note.
Also, of key interest is how fast σ 2

t /t diverges in d ≤ 2 when p mean-zero
or ρ = 1/2. In fact, it has been shown that σ 2

t ∼ t3/2 and t log t in d = 1 and
d = 2 respectively when p is mean-zero(3,9). When p has a drift (

∑
i p(i) �= 0)

and ρ = 1/2, as mentioned at the beginning of the article, σ 2
t is conjectured to

diverge as t4/3 and t(log t)2/3 in d = 1 and d = 2 respectively. Indeed, as also
mentioned, a lower bound on order t5/4 has been shown in Ref. (1) in d = 1.

The main result of this note (Proposition 1.3) is to compute in d = 2 when p
has a non-zero drift and ρ = 1/2 that

lim inf
λ→0

λ2

log(| log λ|)
∫ ∞

0
e−λtσ 2

t dt > 0.

When the drift
∑

i p(i) is in the direction of one of the axes, the same result holds
with “log | log λ|” replaced by “| log λ|1/2.” Clearly σ 2

t /t diverges regardless, and
moreover a formal Tauberian analogy would suggest that σ 2

t is at least on order
t log(log t) in the general case and t(log t)1/2 in the more special case.

We mention that some general rough upper bounds in d = 1, 2, which cover
the case when ρ = 1/2 and p has a drift, are easy to obtain by a comparison
with the symmetrized process, namely σ 2

t ≤ c1t3/2 in d = 1 and σ 2
t ≤ c2t log t
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in d = 2. Although well known, we include them for completeness in
Proposition 1.2.

1.3. Variational Formulas

The method of proof does not work with second-class particles, but with cer-
tain variational formulas for some resolvent quantities. The generator L , with
respect to Pρ , can be decomposed into symmetric and anti-symmetric parts,
L = S + A where S = (L + L∗)/2 and A = (L − L∗)/2. One can check that the
symmetric operator S is in fact the generator of simple exclusion with symmetrized
jump probabilities (p(·) + p(−·))/2.

Consider now the resolvent operators (λ − L)−1 : L2(Pρ) → L2(Pρ) and
(λ − S)−1 : L2(Pρ) → L2(Pρ) well defined for λ > 0. In particular, (λ −
L)−1 f = ∫ ∞

0 e−λs(Ts f )ds and (λ − S)−1 f = ∫ ∞
0 e−λs(T S

s f )ds where T S
t is the

semigroup for the process generated by S. Define, for local φ, the H1,λ,L norm
‖ · ‖1,λ,L by

‖φ‖2
1,λ,L = 〈φ, (λ − S)φ〉ρ + 〈Aφ, (λ − S)−1 Aφ〉ρ

where we note terms 〈φ, (−S)φ〉ρ, 〈Aφ, (λ − S)−1 Aφ〉ρ ≥ 0 as −S is a non-
negative operator. The H1,λ,L Hilbert space is then the completion over local
functions with respect to this norm.

To define a dual norm, consider for f ∈ L2(Pρ) and local φ that 〈 f, φ〉ρ ≤
‖ f ‖0‖φ‖0 ≤ λ−1/2‖ f ‖0‖φ‖1,λ,L . Then, the dual norm ‖ f ‖1,λ,L given by

‖ f ‖−1,λ,L = sup
φ local

‖φ‖1,λ,L =1

〈 f, φ〉ρ (1.4)

is always finite with bound ‖ f ‖2
−1,λ,L ≤ λ−1‖ f ‖2

0. Let H−1,λ,L be the correspond-
ing Hilbert space with respect to ‖ · ‖−1,λ,L . An equivalent variational form for
‖ f ‖−1,λ,L , which will be useful, is given as follows.

‖ f ‖2
−1,λ,L = sup

φ local

{
2〈 f, φ〉ρ − 〈φ, (λ − S)φ〉ρ − 〈Aφ, (λ − S)−1 Aφ〉ρ

}
. (1.5)

We now evaluate these variational expressions in closed form; a proof
of the following lemma is given in Subsection 2.5 to be complete. See also
Section 4.5 Ref. (6) in this context.

Lemma 1.1. For f ∈ L2(Pρ) and λ > 0, we have

‖ f ‖2
−1,λ,L = 〈 f, (λ − L)−1 f 〉ρ. (1.6)

It will be helpful also to define the H1,λ norm ‖g‖1,λ for local g by ‖g‖2
1,λ =

〈g, (λ − S)g〉ρ . For f ∈ L2(Pρ) define also the dual H−1,λ norm ‖ f ‖−1,λ given by
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‖ f ‖2
−1,λ = 〈 f, (λ − S)−1 f 〉ρ . Then, in this notation, (1.5), noting (1.6), is rewritten

as

〈 f, (λ − L)−1 f 〉ρ = sup
g local

{
2〈 f, g〉ρ − ‖g‖2

1,λ − ‖Ag‖2
−1,λ

}
. (1.7)

Also 〈 f, (λ − S)−1 f 〉ρ = supg local{2〈 f, g〉ρ − ‖g‖2
1,λ}.

1.4. Connection Between 〈η0 − ρ, (λ − L)−1(η0 − ρ)〉ρ and σ 2
t

At this point, we note an explicit relation between ‖η0 − ρ‖2
−1,λ,L and σ 2

t .
Compute, observing (1.1), that

〈η0 − ρ, (λ − L)−1(η0 − ρ)〉ρ =
∫ ∞

0
e−λt 〈η0 − ρ, Tt (η0 − ρ)〉ρ dt

=
∫ ∞

0
e−λt Eρ[(η0(0) − ρ)(η0(t) − ρ)] dt

= λ2

2

∫ ∞

0
e−λtσ 2

t dt.

1.5. Upper Bounds

Well known upperbounds on σ 2
t follow from two statements which we include

here for completeness.

Proposition 1.1. There is a universal constant C1 such that

σ 2
t ≤ C1t〈η0 − ρ, (t−1 − L)−1(η0 − ρ)〉ρ

≤ C1t〈η0 − ρ, (t−1 − S)−1(η0 − ρ)〉ρ.

Proof: The first line is well-known (cf. Lemma 3.9 Ref. (9)), and the second
follows by dropping the non-negative term “〈Aφ, (λ − S)−1 Aφ〉ρ” from (1.7).

The next proposition is proved in Ref. (3).

Proposition 1.2. In d ≤ 2, there exists a constant C2 = C2(d, ρ, p) where for
large t,

〈η0 − ρ, (t−1 − S)−1(η0 − ρ)〉ρ ≤
{

C2
√

t in d = 1
C2 log t in d = 2

and so by Proposition 1.1, σ 2
t ≤ C1C2t3/2 in d = 1 and C1C2t log t in d = 2.
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1.6. Lower Bounds

The lowerbounds are through variational formulas and the “connection”
between ‖η0 − ρ‖−1,λ,L and σ 2

t remarked in Subsection 1.4. The following is
the main result of this note and is proved in Subsection 2.6. Let e1 and e2 denote
the standard basis in R

2.

Proposition 1.3. In d = 2, when
∑

i p(i) �= 0 and ρ = 1/2, there is a constant
C3 = C3(p) where for all small λ > 0,

λ2

2

∫ ∞

0
e−λtσ 2

t dt = 〈η0 − 1/2, (λ − L)−1(η0 − 1/2)〉 1
2

≥ C3 log(| log λ)|);

when, more specifically,
∑

i p(i) = ce1 or ce2 is a non-zero multiple of either e1

or e2, 〈η0 − 1/2, (λ − L)−1(η0 − 1/2)〉 1
2

≥ C3| log λ|1/2.

2. SOME PRELIMINARIES

We first give some tools and definitions before going to the proof of
Proposition 1.3 in Subsection 2.6. In the following, the dimension d = 2 is fixed.

2.1. Comparison Bound

We compare 〈 f, (λ − L)−1 f 〉ρ with the formula with respect to a “nearest-
neighbor” operator L0. Let mi = ei · ∑

j p( j) for i = 1, 2. As the drift of p is
assumed not to vanish, at least one of the mi ’s is not zero. Without loss of generality,
suppose m1 �= 0.

Let L0 be the exclusion generator corresponding to nearest-neighbor jump
rates p0(·) where

p0(e1) = |m1|, p0(e2) = |m2|, and p0(i) = 0 otherwise, when m2 �= 0 and

p0(e1) = |m1|, p0(±e2) = 1/4, and p0(i) = 0 otherwise, when m2 = 0.

The following is proved in Theorem 2.1 Ref. (10).

Proposition 2.1. There is a constant C4 = C4(p) where

C−1
4 〈 f, (λ − L0)−1 f 〉ρ ≤ 〈 f, (λ − L)−1 f 〉ρ ≤ C4〈 f, (λ − L0)−1 f 〉ρ.
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2.2. Duality

Let E denote the collection of finite subsets of Z
2, and let En denote those

subsets of cardinality n. Let also 	B be the function

	B(η) =
∏
x∈B

ηx − ρ√
ρ(1 − ρ)

where we take 	∅ = 1 by convention. One can check that {	B : B ∈ E} is Hilbert
basis of L2(Pρ). In particular, any function f ∈ L2(Pρ) has decomposition

f =
∑
n≥0

∑
B∈En

f(B)	B

with coefficient f : E → R which in general depends on ρ. Then, for f, g ∈
L2(Pρ),

〈f, g〉 := 〈 f, g〉ρ =
∑
B∈E

f(B)g(B)

and ‖f‖2 := ‖ f ‖2
0 = 〈 f, f 〉ρ . Let also Cn be the subspace generated by finite linear

combinations of {	B : |B| = n}. When f ∈ Cn , we have f is a function on En , and
we say in this case both f and its coefficient f are of degree n. Note also, when f
is local, then f is also local on E , that is with support on a finite number of subsets
of Z

2.
The operators L , S and A have counterparts L, S and A which act on

“coefficient” functions f. These are given in the expressions

L f =
∑
B∈E

(Lf)(B)	B, S f =
∑
B∈E

(Sf)(B)	B, and A f =
∑
B∈E

(Af)(B)	B .

Let s and a be the symmetric and anti-symmetric parts of p, s(i) = (p(i) +
p(−i))/2 and a(i) = (p(i) − p(−i))/2. Also for B ⊂ Z

d , denote

Bx,y =



B \ {x} ∪ {y} when x ∈ B, y �∈ B
B \ {y} ∪ {x} when x �∈ B, y ∈ B

B otherwise.

Now, of course, L = S + A. Moreover, the symmetric part S can be computed as

(Sf)(B) = 1

2

∑
x,y∈Z2

s(y − x)[f(Bx,y) − f(B)].

Note that Sf ∈ Cn for f ∈ Cn , and so S “preserves” degrees. Moreover, S restricted
to degree n functions governs the dynamics of the set of coordinates of n particles
in symmetric simple exclusion.

Also, the anti-symmetric part A, after a now standard careful calculation
(cf. Ref. (11)), can be decomposed into the sum of three operators which preserve,
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increase, and decrease the degree of the function acted upon: A = (1 − 2ρ)A0 +
2
√

ρ(1 − ρ)(A+ − A
−).

(A0f)(B) = ∑
x∈B
y �∈B

a(y − x)[f(Bx,y) − f(B)]

(A+
f)(B) = ∑

x∈B
y∈B

a(y − x)f(B − {y})
(A−

f)(B) = ∑
x �∈B
y �∈B

a(y − x)f(B ∪ {x}).
As A0, A

+ and A
− take a degree n coefficient function f : En → R into

respectively a degree n, n + 1 and n − 1 function. It will be helpful to write A in
terms of its “degree” actions,

A =
∑
n≥0

(An,n−1 + An,n + An,n+1)

where Am,n is the part which takes degree m functions to degree n functions. Here,
by convention A0,−1 = A0,0 = A1,0 = 0 are zero operators.

At this point, when ρ = 1/2, we observe that A = A
+ − A

− as the part which
preserves degree vanishes here.

2.3. H1 and H−1 Coefficent Norms

Define, for local functions g, the H1,λ norm ‖g‖1,λ by ‖g‖2
1,λ = 〈g, (λ − S)g〉,

and also the dual H−1,λ norm ‖g‖−1,λ by ‖g‖2
−1,λ = suph local{2〈g, h〉 − ‖h‖2

1,λ}.
Then, with respect to coefficient functions g, we have (1.7) is rewritten as

〈 f, (λ − L)−1 f 〉ρ = sup
g local

{
2〈f, g〉 − ‖g‖2

1,λ − ‖Ag‖2
−1,λ

}
. (2.8)

2.4. “Free Particle” Bounds

To analyze these variational formulas, it will be helpful computationally to
“remove the hard-core exclusion.” In other words, we want to get equivalent bounds
in terms of operators which govern completely independent or “free” motions. We
follow Bernardin(1). Let χn = (Z2)n and consider n independent random walks
with jump rates s on Z

2. The process xt = (x1
t , . . . , xn

t ) evolves on χn and has
generator acting on local, namely, finitely supported functions,

(Sfreef)(x) =
∑
1≤ j≤n

z∈Z2

s(z)[f(x + zω j ) − f(x)]

where zω j = (0, . . . , 0, z, 0, . . . , 0) is the state with z in the j th place. With respect
to local functions on χn , define innerproduct

〈φ,ψ〉free = 1

n!

∑
x∈χn

φ(x)ψ(x),
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and define H1,λ and H−1,λ norms ‖φ‖1,λ,free = 〈φ, (λ − Sfree)φ〉1/2
free and

‖φ‖−1,λ,free by

‖φ‖2
−1,λ,free = sup

ψ local on χn

{
2〈φ,ψ〉free − ‖ψ‖2

1,λ,free

}
.

Let nowGn ⊂ χn be those points whose coordinates are distinct. For a function
f ∈ Cn , consider its natural extension to a function ffree on χn , namely ffree(x) =
f(U ) where U is the set formed from the coordinates of x ∈ χn . Note that ffree

is supported on Gn . The following is a part of Theorems 3.1 and 3.2(1) [which
simplifies as f̃ = ffree for f ∈ C1, and 1x∈Gn f̃ = ffree for f ∈ Cn].

Proposition 2.2. There exists a constant C5, depending only on the function
degree, such that for f ∈ C1 we have

C−1
5 ‖ffree‖2

1,λ,free ≤ ‖f‖2
1,λ ≤ C5‖ffree‖2

1,λ,free.

Also, for f ∈ Cn (for any n ≥ 1),

‖f‖2
−1,λ ≤ C5‖ffree‖2

−1,λ,free.

We express now the “free” H1,λ and H−1,λ norms in terms of Fourier trans-
forms. Let ψ be a local function on χn and let ψ̂ be its Fourier transform

ψ̂(s1, . . . , sn) = 1√
n!

∑
x∈χn

e2π i(x1·s1+···+xn ·sn )ψ(x)

where s1, . . . , sn ∈ ([0, 1]2. Compute

Ŝfreeψ(s1, . . . , sn) = −

 n∑

j=1

θ2(s j )


 ψ̂(s1, . . . , sn)

where θ2(u) = 2
∑

z∈Z2 s(z) sin2(π (u · z)). Hence, we have

‖ψ‖2
1,λ,free =

∫
s∈([0,1]2)n

s=(s1 ,...,sn )

(
λ +

n∑
j=1

θ2(s j )

)
|ψ̂(s1, . . . , sn)|2ds

and

‖ψ‖2
−1,λ,free =

∫
s∈([0,1]2)n

s=(s1 ,...,sn )

|ψ̂(s1, . . . , sn)|2
λ + ∑n

j=1 θ2(s j )
ds.

2.5. Proof of Lemma 1.1

The proof follows in two steps. In step 1, as u = (λ − L)−1 f belongs
to the domain of L , let {un} be local functions such that lim un = u and



Occupation-Time Variance in 2D Asymmetric Exclusion Process with Density 797

limn Lun = Lu in L2(Pρ). Then, for φ local, write 〈 f, φ〉ρ = 〈(λ − L)u, φ〉ρ =
limn〈(λ − L)un, φ〉ρ = limn〈un, (λ − L∗)φ〉ρ and

〈un, (λ − L∗)φ〉ρ ≤ 〈un, (λ − S)un〉1/2
ρ 〈(λ − L∗)φ, (λ − S)−1(λ − L∗)φ〉1/2

ρ .

As 〈un, (λ − S)un〉ρ = 〈un, (λ − L)un〉 → 〈 f, (λ − L)−1 f 〉ρ and 〈(λ − L∗)

φ, (λ − S)−1(λ − L∗)φ〉ρ = ‖φ‖2
1,λ,L we have 〈 f, φ〉ρ ≤ 〈 f, (λ − L)−1 f 〉1/2

ρ

‖φ‖1,λ,L . Hence, ‖ f ‖2
−1,λ,L ≤ 〈 f, (λ − L)−1 f 〉ρ .

In step 2, define vn = (λ − L∗)−1(λ − S)un in the domain of L∗, and let {vm,n}
be a sequence of local functions where limm vm,n = vn and limm L∗vm,n = L∗vn

in L2(Pρ). Then, limn limm〈 f, vm,n〉ρ = limn〈(λ − L)−1 f, (λ − S)un〉ρ =
(1/2) limn〈u, (λ− L)un〉ρ + (1/2) limn〈(λ− L)u, un〉ρ = 〈 f, (λ − L)−1 f 〉ρ . Also,
limn limm ‖vm,n ‖2

1,λ,L = limn limm 〈(λ − L∗)vm,n, (λ − S)−1 (λ − L∗)vm,n〉ρ =
limn 〈(λ − S)un, un〉ρ = limn 〈(λ − L)un, un〉ρ = 〈 f, (λ − L)−1 f 〉ρ . Hence,
substituting into (1.4), we get ‖ f ‖2

−1,λ,L ≥ 〈 f, (λ − L)−1 f 〉ρ . �

2.6. Proof of Proposition 1.3

Let ρ = 1/2 and f (η) = η0 − 1/2. To prove Proposition 1.1, we find lower
bounds on ‖ f ‖2

−1,λ = 〈 f, (λ − L)−1 f 〉1/2. From Proposition 2.1, we will assume
without loss of generality that L takes nearest-neighbor form L = L0. Consider
now the variational formula given in (2.8). The strategy will be (1) to replace
to restrict the supremum there to local degree 1 functions, and (2) to use the
comparison bounds with respect to independent particles (Proposition 2.2) to help
bound terms in the formula.

To this end, note f = (1/2)1{0} where 1{0} is the indicator of the singleton {0}.
Let φ ∈ C1 be a local function on E1, and observe then φfree is local on Z

2. To
simplify notation, let s(±e1) = b1 > 0, s(±e2) = b2 > 0 and a(e1) = −a(−e1) =
a1 �= 0, a(e2) = −a(−e2) = a2. As ρ = 1/2, Aφ takes simple form Aφ = A1,2φ.
More specifically, (A1,2φ)({x, y}) = a(y − x)(φ({x}) − φ({y})), and (A1,2φ)free is
written as

(A1,2φ)free((x, y)) =




±a1(φfree(x) − φfree(x ± e1)) when y = x ± e1

±a2(φfree(x) − φfree(x ± e2)) when y = x ± e2

0 otherwise.

Inserting into (2.8), using Proposition 2.2, we have for some constant C6 that

〈 f, (λ − L)−1 f 〉1/2 ≥ C6 sup
φ∈C1, local

×
{
〈1{0}, φ〉 − ‖φfree‖2

1,λ,free − ‖(A1,2φ)free‖2
−1,λ,free

}
. (2.9)
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Now, it is a calculation to find for s = (s1, s2), t = (t1, t2) ∈ [0, 1]2 that

̂(A1,2φ)free(s, t) = 1√
2

∑
(x,y)∈(Z2)2

e2π i(x ·s+y·t)(A1,2φ)free((x, y))

= i√
2
φ̂free(s + t)[2a1 sin(2πs1) + 2a2 sin(2πs2)

+ 2a1 sin(2π t1) + 2a2 sin(2π t2)].

Also, note 〈1{0}, φ〉 = φfree(0). Then, the expression in brackets in (2.9) in Fourier
terms is∫
[0,1]2

(
φ̂free(s) − (λ + θ2(s))|φ̂free|2(s)

)
ds (2.10)

− 1

2

∫
([0,1]2)2

[∑2
i=1 2ai sin(2πsi ) + 2ai sin(2π ti )

]2

λ + θ2(s) + θ2(t)
|φ̂free(s + t)|2ds1ds2dt1dt2.

In the following, to simplify notation, we will drop the subscript “free.”
We now change coordinates in the second integral:

(s1, s2, t1, t2) =
(

u + v

2
,
w + z

2
,

u − v

2
,
w − z

2

)

(whose Jacobian determinant in absolute value is 1/4). The region
[0, 1]4 is mapped to D2 where D is a planar diamond with vertices
(0, 0), (1,−1), (1, 1), (2, 0). Let

γ (u, v, w, z) = 4b1 sin2

(
π

u + v

2

)
+ 4b2 sin2

(
π

w + z

2

)

+ 4b1 sin2

(
π

u − v

2

)
+ 4b2 sin2

(
π

w − z

2

)

= 8b1 sin2(π (u/2)) cos2(π (v/2)) + 8b1 sin2(π (v/2)) cos2(π (u/2))

+ 8b2 sin2(π (w/2)) cos2(π (z/2))+8b2 sin2(π (z/2)) cos2(π (w/2))

and

υ(u, v, w, z) = 16a2
1 sin2(πu) cos2(πv) + 16a2

2 sin2(πw) cos2(π z)

+ 32a1a2 sin(πu) cos(πv) sin(πw) cos(π z)

≤ 32a2
1 sin2(πu) cos2(πv) + 32a2

2 sin2(πw) cos2(π z).



Occupation-Time Variance in 2D Asymmetric Exclusion Process with Density 799

The integral in the second term of (2.10), as θ2((u, v)) = 4b1 sin2(πu) +
4b2 sin2(πv), is rewritten as

1

4

∫
D

∫
D

υ(u, v, w, z)

λ + γ (u, v, w, z)
|φ̂((u, w))|2du dv dw dz

≤ 32

4

∫
D

∫
D

a2
1 sin2(πu) cos2(πv) + a2

2 sin2(πw) cos2(π z)

λ + γ (u, v, w, z)

× |φ̂((u, w))|2du dv dw dz.

By changing variables and using some symmetries–for instance the marginal
du dv-integration over 1 ≤ u ≤ 2, 0 ≤ ±v ≤ 2 − u, and 0 ≤ u ≤ 1, −u ≤ v ≤ 0,
noting φ̂((u + 1, w))) = φ̂((u, w)), is the same as over 0 ≤ u ≤ 1, u ≤ v ≤ 1, and
0 ≤ u ≤ 1, 0 ≤ v ≤ u respectively–it is not difficult to see that the last integral
equals

32
∫

[0,1]2

∫
[0,1]2

a2
1 sin2(πu) cos2(πv) + a2

2 sin2(πw) cos2(π z)

λ + γ (u, v, w, z)

× |φ̂((u, w))|2dv dz du dw

= 32
∫ 1

0

∫ 1

0
[a2

1 sin2(πu)F1
λ (u, w) + a2

2 sin2(πw)F2
λ (u, w)]|φ̂((u, w))|2dudw

where

F1
λ (u, w) =

∫ 1

0

∫ 1

0

cos2(πv)dv dz

λ + γ (u, v, w, z)
and F2

λ (u, w) =
∫ 1

0

∫ 1

0

cos2(π z)dv dz

λ + γ (u, v, w, z)
.

Let now C7 = 4(b1 + b2) + 16(a2
1 + a2

2). Substituting into (2.10) and (2.9),
we obtain C−1

6 〈 f, (λ − L)−1 f 〉ρ greater than

sup
φ

{ ∫ 1

0

∫ 1

0
φ̂((u, w)) (2.11)

− [
λ+C7(sin2(πu)+ sin2(πw))(1+ F1

λ (u, w)+ F2
λ (u, w))

]|φ̂((u, w))|2du dw

}

where the supremum is on φ local, or without loss of generality on L2(Z2). When
specifically a2 = 0, we have the lower bound

sup
φ

{∫ 1

0

∫ 1

0
φ̂((u, w)) (2.12)

− [
λ + C7(sin2(πu) + sin2(πw)) + C7 sin2(πu)F1

λ (u, w)
]|φ̂((u, w))|2du dw

}
.
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We now concentrate on the general rates case bound (2.11). By optimizing
on the quadratic expression involving φ we get the lower bound

1

4

∫ 1

0

∫ 1

0

du dw

λ + C7(sin2(πu) + sin2(πw))(1 + F1
λ (u, w) + F2

λ (u, w))
(2.13)

with optimizer

φ̂((u, w)) = 1

2
[
λ + C7(sin2(πu) + sin2(πw))(1 + F1

λ (u, w) + F2
λ (u, w))

]
which is the transform of a real function as φ̂((u, w)) = φ̂∗((1 − u, 1 − w)) (note
Fi

λ(u, w) = Fi
λ(1 − u, 1 − w) for i = 1, 2 by observing the form of γ , and chang-

ing variables v → 1 − v and z → 1 − z).
We now bound F1

λ (u, w) + F2
λ (u, w) for |u|, |w| ≤ 1/2 and λ ≤ 1. Since

cos(x) is decreasing for 0 ≤ x ≤ π/2 and sin(x) ≥ (2/π )x for 0 ≤ x ≤ π/2, we
have

F1
λ (u, w) + F2

λ (u, w) ≤
∫

[([1/2,1]×[0,1])∪([0,1]×[1/2,1])

2dv dz

λ + 4b1v2 + 4b2z2

+
∫ 1/2

0

∫ 1/2

0

2dv dz

λ + 4b1(u2 + v2) + 4b2(w2 + z2)

≤ C8 +
∫ π/2

0

∫ 1

0

2sdsdα

λ + b̄(u2 + w2 + s2)

= C8 + π

2b̄
log

[λ + b̄(u2 + w2) + b̄

λ + b̄(u2 + w2)

]
≤ C9 + π

2b̄
| log(λ + b̄(u2 + w2))|.

where b̄ = 4 min{b1, b2} and C8 = C8(b1, b2), C9 = C9(b1, b2) are constants.
Hence, as sin(x) ≤ x , we can bound (2.13) below by

1

4

∫ 1/2

0

∫ 1/2

0

du dw

λ + C7π2(u2 + w2)(1 + C9 + (π/2b̄)| log(λ + b̄(u2 + w2))|) .

(2.14)

We have, with respect to constants C10, C11, for all small λ > 0 that 4 times (2.14)
is greater than∫ 1/4

0

rdr

λ + C10r2(1 + | log(λ + b̄r2)|)

=
∫ 1/(4

√
λ)

0

rdr

1 + C10r2(1 + | log λ(1 + b̄r2)|)
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≥
∫ 1/(4

√
λ)

1

rdr

r2(1 + C10 + C10| log((1 + b̄r2)/r2)| + C10| log(λr2)|)

≥ 1

C11

∫ 1/(4
√

λ)

1

dr

r | log λr2| ≥ 1

C11

∫ 1/4

√
λ

dr

r | log r2| .

This last expression is order | log(log λ)|. We conjecture, to get the larger expected
order of | log λ|2/3, it seems one would need to optimize also over higher degree
functions in (2.9). In such optimizations one would need to handle φ̃ for degrees
≥ 2 which does not seem trivial.

We note in the specific case a2 = 0, we bound (2.12) by

1

4

∫ 1/2

0

∫ 1/2

0

du dw

λ + C7π2(u2 + w2) + C7π2u2(C9 + (π/2b̄)| log(λ + b̄(u2 + w2))|) .

Following closely the sequence to bound the second-class particle variance in
d = 2 (cf. p. 470 Ref. (4)), we observe | log(λ + u2 + w2)| ≤ | log(λ + w2)| for λ

small and 0 ≤ u, w ≤ 1/2. And so, we obtain a lower bound on order∫ 1/2

0

∫ 1/2

0

du dw

λ + u2 + w2 + u2| log(λ + w2)| .

With substitution u = y(1 + | log(λ + w2)|)−1/2 the above expression is bounded
below by ∫ 1/2

0

∫ 1/2

0

dy dw

λ + y2 + w2
(1 + | log(λ + w2)|)−1/2.

Changing to polar coordinates and restricting π/6 ≤ α ≤ π/4, we get a lower
bound on order as in Ref. (4)∫ 1/20

0

rdr

λ + r2
| log(λ + r2)|−1/2 ≥ C12| log λ|1/2

for a constant C12. �
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